Copied to
clipboard

G = C3×C4.10C42order 192 = 26·3

Direct product of C3 and C4.10C42

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C3×C4.10C42, C12.33C42, (C2×C24).4C4, (C2×C8).1C12, C4.10(C4×C12), (C2×C12).278D4, (C22×C6).1Q8, C23.1(C3×Q8), (C2×M4(2)).5C6, (C6×M4(2)).17C2, C12.102(C22⋊C4), C6.22(C2.C42), (C22×C12).387C22, (C2×C4).9(C3×D4), C22.2(C3×C4⋊C4), (C2×C6).19(C4⋊C4), (C2×C4).64(C2×C12), C4.18(C3×C22⋊C4), (C2×C12).325(C2×C4), (C22×C4).22(C2×C6), C2.3(C3×C2.C42), SmallGroup(192,144)

Series: Derived Chief Lower central Upper central

C1C4 — C3×C4.10C42
C1C2C4C2×C4C22×C4C22×C12C6×M4(2) — C3×C4.10C42
C1C4 — C3×C4.10C42
C1C12 — C3×C4.10C42

Generators and relations for C3×C4.10C42
 G = < a,b,c,d | a3=b4=1, c4=d4=b2, ab=ba, ac=ca, ad=da, dcd-1=bc=cb, bd=db >

Subgroups: 122 in 86 conjugacy classes, 54 normal (12 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C6, C8, C2×C4, C23, C12, C12, C2×C6, C2×C6, C2×C8, M4(2), C22×C4, C24, C2×C12, C22×C6, C2×M4(2), C2×C24, C3×M4(2), C22×C12, C4.10C42, C6×M4(2), C3×C4.10C42
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, D4, Q8, C12, C2×C6, C42, C22⋊C4, C4⋊C4, C2×C12, C3×D4, C3×Q8, C2.C42, C4×C12, C3×C22⋊C4, C3×C4⋊C4, C4.10C42, C3×C2.C42, C3×C4.10C42

Smallest permutation representation of C3×C4.10C42
On 48 points
Generators in S48
(1 39 19)(2 40 20)(3 33 21)(4 34 22)(5 35 23)(6 36 24)(7 37 17)(8 38 18)(9 46 25)(10 47 26)(11 48 27)(12 41 28)(13 42 29)(14 43 30)(15 44 31)(16 45 32)
(1 3 5 7)(2 4 6 8)(9 15 13 11)(10 16 14 12)(17 19 21 23)(18 20 22 24)(25 31 29 27)(26 32 30 28)(33 35 37 39)(34 36 38 40)(41 47 45 43)(42 48 46 44)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 41 7 43 5 45 3 47)(2 44 4 42 6 48 8 46)(9 20 15 22 13 24 11 18)(10 19 12 17 14 23 16 21)(25 40 31 34 29 36 27 38)(26 39 28 37 30 35 32 33)

G:=sub<Sym(48)| (1,39,19)(2,40,20)(3,33,21)(4,34,22)(5,35,23)(6,36,24)(7,37,17)(8,38,18)(9,46,25)(10,47,26)(11,48,27)(12,41,28)(13,42,29)(14,43,30)(15,44,31)(16,45,32), (1,3,5,7)(2,4,6,8)(9,15,13,11)(10,16,14,12)(17,19,21,23)(18,20,22,24)(25,31,29,27)(26,32,30,28)(33,35,37,39)(34,36,38,40)(41,47,45,43)(42,48,46,44), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,41,7,43,5,45,3,47)(2,44,4,42,6,48,8,46)(9,20,15,22,13,24,11,18)(10,19,12,17,14,23,16,21)(25,40,31,34,29,36,27,38)(26,39,28,37,30,35,32,33)>;

G:=Group( (1,39,19)(2,40,20)(3,33,21)(4,34,22)(5,35,23)(6,36,24)(7,37,17)(8,38,18)(9,46,25)(10,47,26)(11,48,27)(12,41,28)(13,42,29)(14,43,30)(15,44,31)(16,45,32), (1,3,5,7)(2,4,6,8)(9,15,13,11)(10,16,14,12)(17,19,21,23)(18,20,22,24)(25,31,29,27)(26,32,30,28)(33,35,37,39)(34,36,38,40)(41,47,45,43)(42,48,46,44), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,41,7,43,5,45,3,47)(2,44,4,42,6,48,8,46)(9,20,15,22,13,24,11,18)(10,19,12,17,14,23,16,21)(25,40,31,34,29,36,27,38)(26,39,28,37,30,35,32,33) );

G=PermutationGroup([[(1,39,19),(2,40,20),(3,33,21),(4,34,22),(5,35,23),(6,36,24),(7,37,17),(8,38,18),(9,46,25),(10,47,26),(11,48,27),(12,41,28),(13,42,29),(14,43,30),(15,44,31),(16,45,32)], [(1,3,5,7),(2,4,6,8),(9,15,13,11),(10,16,14,12),(17,19,21,23),(18,20,22,24),(25,31,29,27),(26,32,30,28),(33,35,37,39),(34,36,38,40),(41,47,45,43),(42,48,46,44)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,41,7,43,5,45,3,47),(2,44,4,42,6,48,8,46),(9,20,15,22,13,24,11,18),(10,19,12,17,14,23,16,21),(25,40,31,34,29,36,27,38),(26,39,28,37,30,35,32,33)]])

66 conjugacy classes

class 1 2A2B2C2D3A3B4A4B4C4D4E6A6B6C···6H8A···8L12A12B12C12D12E···12J24A···24X
order122223344444666···68···81212121212···1224···24
size112221111222112···24···411112···24···4

66 irreducible representations

dim111111222244
type+++-
imageC1C2C3C4C6C12D4Q8C3×D4C3×Q8C4.10C42C3×C4.10C42
kernelC3×C4.10C42C6×M4(2)C4.10C42C2×C24C2×M4(2)C2×C8C2×C12C22×C6C2×C4C23C3C1
# reps13212624316224

Matrix representation of C3×C4.10C42 in GL4(𝔽73) generated by

64000
06400
00640
00064
,
46000
04600
00460
00046
,
0010
0001
46000
02700
,
0100
27000
00046
0010
G:=sub<GL(4,GF(73))| [64,0,0,0,0,64,0,0,0,0,64,0,0,0,0,64],[46,0,0,0,0,46,0,0,0,0,46,0,0,0,0,46],[0,0,46,0,0,0,0,27,1,0,0,0,0,1,0,0],[0,27,0,0,1,0,0,0,0,0,0,1,0,0,46,0] >;

C3×C4.10C42 in GAP, Magma, Sage, TeX

C_3\times C_4._{10}C_4^2
% in TeX

G:=Group("C3xC4.10C4^2");
// GroupNames label

G:=SmallGroup(192,144);
// by ID

G=gap.SmallGroup(192,144);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-2,-2,168,197,344,248,2111,172,6053,124]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^4=1,c^4=d^4=b^2,a*b=b*a,a*c=c*a,a*d=d*a,d*c*d^-1=b*c=c*b,b*d=d*b>;
// generators/relations

׿
×
𝔽